Самодельные станки и приспособления:
Первые станки
Фото старых станков
Видео простейших станков
Стойки и направляющие для дрели
Универсальный станок из дрели
Циркулярная пила из дрели
Токарный станок
Токарный станок с ножным приводом
Сверлильный станок из дрели
Сверлильный станок для плат
Сверлильный станок
Регулирование оборотов дрели
Насадки на дрель
Лобзик-станок
Настольный электролобзик с эксцентриком
Лобзиковый станок из ручного электролобзика
Вариатор для станка
Подключение трехфазного двигателя к однофазной сети
Приспособление для фрезерования шипов
Ленточный шлифстанок из дрели
Ленточный шлифстанок
Ленточная пила
Циркулярка из ручной дисковой пилы
Полировальный станок
из дрели
Станок по резке камня
Станина для болгарки
Самодельный шкив
Простая передача для станка
Самодельный верстак
Фрезерный стол
Ручной листогиб
Самодельный трубогиб
Преобразование вращательного
движения в прямолинейное
Виды передач
Использование автомобильной шпаклевки
Тахометр из моторчика и вольтметра
Печь для плавки алюминия
Приспособления для шлифовки
Современные станки для домашних мастерских и работа на них:
Токарный станок
Сверлильный станок
Циркулярный станок
Фуговальный станок
Лобзиковый станок
Ленточнопильный станок
Радиально-консольная пила
Работа на токарном станке
Резец
Работа на циркулярном станке
Работа на лобзиковом и ленточнопильном станках
Ручной электроинструмент:
Дрель
Устройство дрели
Ремонт дрели
Устройство шуруповерта
Ремонт шуруповерта
Ручной фрезер
Работа ручным фрезером
Приспособления для ручного фрезера
Электролобзик
Дисковая пила
Направляющие для дисковой пилы
Электрорубанок
Сабельная пила
Эксцентриковая шлифовальная машина
Ленточная шлифовальная машина
Перфоратор
Отличия перфоратора от ударной дрели
Устройство перфоратора
Строительный фен
Работа болгаркой
Сверление металла
Сверление стекла
Сверление керамической плитки
Сверление бетона
Сверление дерева и ДСП
Сельскохозяйствен- ные (садовые) инструменты:
Самодельная пилорама
Самодельная бетономешалка
Самодельный культиватор из лебедки
Самодельный плуг
Самодельный ручной культиватор
Ручная сеялка
Самодельный дровокол
Бензопила
Устройство бензопилы
Работа бензопилой
Насадки и приспособления для бензопилы
Ремонт бензопилы
Универсальные козлы
Мойка и сортировка картофеля
Плодосъемник для яблок
Подъемник для дачи
Самодельный снегоуборщик
Триммеры
Газонокосилки
Самодельная газонокосилка
Кусторезы и сучкорезы
Снегоуборщики
Мотоблоки
Мотокультиваторы
Работа мотоблоком
Обслуживание мотоблока
Устройство мотоблока
Ремонт мотоблока
Электрогенераторы
Ручной инструмент:
Фото старых инструментов
Первый инструмент
Обзор отверток
Обзор гаечных ключей
Клещи, плоскогубцы, кусачки и т.п.
Струбцины и зажимы
Пила
Напильник
Фреза
Сверло
Метчик и плашка
Сварка и пайка:
Типы сварочных аппаратов
Работа сварочным аппаратом
Техника безопасности при сварке
Подключение сварочного аппарата
Сварочные электроды
Покрытие сварочных электродов
Маркировка электродов
Типы и марки электродов
Дефекты сварных соединений
Контроль сварных соединений
Приспособления для сварки
Аргонная TIG сварка
Ремонт сварочных аппаратов
Регулировка сварочного тока
Выпрямитель для сварочного аппарата
Самодельный сварочный аппарат
Сварка алюминия
Сварка меди
Сварка чугуна
Сварка титана
Сварка нержавейки
Наплавка металла
Выбор сварочного инвертора
Выбор сварочного полуавтомата
Контактная точечная сварка
Самодельная точечная сварка
Сварка и пайка ленточных пил
Пайка металлов
Пайка паяльником
Виды паяльников
Пайка твердыми припоями
Пайка меди (труб)
Пайка алюминия
Сварка пластмасс
Сварка полипропиленовых труб
Сварка полиэтиленовых труб
Заточка:
Заточка ножей
Приспособления для заточки
Бруски для заточки ножей
Угол заточки ножа
Заточка и разводка пилы
Заточка сверла
Заточка цепи бензопилы
Заточка дисковых пил
Заточка фрез
Заточка ленточной пилы
Маркировка и выбор шлифовальных кругов
Правка шлифовальных кругов
Станок для заточки из ленточной шлифмашины
Материалы:
Оргстекло
Фторопласт
Капролон
Обработка пластмасс
Гибка оргстекла

Надежность сварочного трансформатора
Расчет сварочного трансформатора
Обмотка сварочного трансформатора
П-образный сварочный трансформатор
Сварочный трансформатор из статора электродвигателя
Сварочный аппарат из ЛАТРа

Сварочный аппарат из ЛАТРа

Распространенным материалом для изготовления самодельных сварочных трансформаторов издавна являются сгоревшие ЛАТРы (лабораторные автотрансформаторы). Внутри корпуса ЛАТРа находится тороидальный автотрансформатор, выполненный на магнитопроводе значительного сечения. Именно этот магнитопровод понадобится от ЛАТРа для изготовления сварочного трансформатора. Для трансформатора обычно требуется два одинаковых кольца-магнитопровода от крупных ЛАТРов.

ЛАТРы выпускаются разных типов, с максимальными токами от 2 до 10А, не все из них годятся для изготовления трансформаторов для сварки, только те, размеры магнитопроводов которых позволяют уложить необходимое количество витков. Наиболее распространенным среди них, наверное, является автотрансформатор типа ЛАТР-1М. Он в зависимости от провода обмотки рассчитан на токи 6,7-9А, хотя размеры самого автотрансформатора от этого не меняются. Магнитопровод ЛАТР-1М имеет следующие размеры: внешний диаметр D=127 мм, внутренний диаметр d=70 мм, высота кольца h=95 мм, сечение S=27 см2, вес около 6 кг. Из двух колец от ЛАТР-1М можно изготовить хороший сварочный трансформатор, правда, из-за малого внутреннего объема окна, нельзя использовать слишком толстые провода и придется экономить каждый миллиметр пространства окна. Существенным недостатком трансформатора из ЛАТРов, по сравнению со схемой П-образного трансформатора, является также то, что нельзя изготовить катушки отдельно от магнитопровода. Это означает, что придется мотать, протягивая каждый виток через окно магнитопровода, что конечно же сильно усложняет процесс изготовления.

Существуют ЛАТРы и с более объемными кольцами-магнитопрводами. Они намного лучше подходят для изготовления сварочных трансформаторов, но менее распространены. У других автотрансформаторов, аналогичных по параметрам ЛАТР-1М, например АОСН-8-220, магнитопровод имеет другие размеры: внешний диаметр кольца больше, но зато меньше высота и диаметр окна d=65 мм. В этом случае диаметр окна необходимо расширить до 70 мм.

Кольцо магнитопровода состоит из намотанных друг на друга отрезков железной ленты, скрепленной по краям точечной сваркой. Для того чтобы увеличить внутренний диаметр окна, необходимо изнутри отсоединить конец ленты и отмотать ее необходимое количество. Но не пытайтесь отмотать за один раз все. Лучше отматывать по одному витку, каждый раз отрезая лишнее. Иногда таким образом расширяют и окна более крупных ЛАТРов, хотя при этом неизбежно уменьшается площадь сечения магнитопровода.

В принципе для сварочного трансформатора было бы достаточно площади сечения и одного кольца. Но проблема заключается в том, что магнитопроводы меньшей площади неизбежно требуют большего количества витков, что увеличивает объем катушек и требует большего пространства окон.

Трансформатор с разнесенными плечами

В начале изготовления трансформатора необходимо изолировать оба кольца. Особое внимание при этом следует обратить на углы краев колец - они острые, могут запросто разрезать наложенную изоляцию, а потом замкнуть собой провод обмотки. Углы лучше сначала несколько сгладить напильником, а потом вдоль наложить какую-нибудь крепкую и эластичную ленту, например, плотную киперную или разрезанную вдоль трубку кембрика. Сверху кольца, каждое отдельно, обматываются нетолстым слоем тканевой изоляции.

Далее изолированные кольца соединяются вместе. Кольца плотно стягиваются крепкой лентой, а по бокам фиксируются деревянными колышками, также потом стянутыми лентой, - сердечник магнитопровод для трансформатора готов.

Сварочный трансформатор из ЛАТРа
Сварочный трансформатор из ЛАТРа

Следующий шаг самый ответственный - укладка первичной обмотки. Обмотки этого сварочного трансформатора мотаются по схеме: первичная посредине, две секции вторичной на боковых плечах.

Сварочный трансформатор из ЛАТРа
Сварочный трансформатор из ЛАТРа

На первичную обмотку уходит около 70-80 м провода, который придется с каждым витком протягивать через оба окна магнитопровода. При этом никак не обойтись без нехитрого приспособления.

Мотовило
Мотовило

Сначала провод наматывается на деревянное мотовило и в таком виде без проблем протягивается через окна колец.

Провод первичной обмотки может иметь диаметр 1,6-2,2 мм. Для магнитопроводов, составленных из колец с диаметром окна 70 мм, можно применять провод диаметром не более 2 мм, иначе останется мало места для вторичной обмотки. Первичная обмотка содержит, как правило, 180-200 витков при нормальном сетевом напряжении, что достаточно для эффективной работы 3-миллиметровым электродом.

На конец провода надевается кембрик, который притягивается ХБ изолентой к началу первого слоя. Поверхность магнитопровода имеет закругленную форму, поэтому первые слои будут содержать меньше витков, чем последующие - для выравнивания поверхности.

Слои витков первичной обмотки
Слои витков первичной обмотки

Провод ложится виток к витку, ни в коем случае не допуская захлестывания провода на провод. Слои провода обязательно изолируются друг от друга. Опять же, для экономии пространства обмотку следует класть как можно компактнее. На магнитопроводе из некрупных колец межслоевую изоляцию следует использовать потоньше. Не следует стремиться намотать первичную обмотку быстро. Процесс этот медленный, а после укладки жестких проводов начинают болеть пальцы. Лучше сделать это за 2-3 подхода - ведь качество важнее скорости.

Если первичная обмотка изготовлена, большая часть работы выполнена, остается вторичная. Но сначала нужно определить количество витков вторичной обмотки на заданное напряжение. Для начала включите уже готовую первичную в сеть. Ток холостого хода этого варианта трансформатора небольшой - всего 70-150 мА, гул трансформатора должен быть еле слышен. Наматываем на одно из боковых плеч 10 витков любого провода и измеряем выходное напряжение на них. На каждое из боковых плеч приходится по половине магнитного потока, создаваемого на центральном плече, поэтому здесь на каждый виток вторичной обмотки приходится 0,6-0,7В. Исходя из полученного результата, рассчитывается количество витков вторичной обмотки, ориентируясь на напряжение 50В (около 75-80 витков).

Выбор материала вторичной обмотки ограничен оставшимся пространством окон магнитопровода. Тем более что каждый виток толстого провода придется протягивать по всей длине в узкое окно. Проще всего намотать обычным многожильным проводом 16 мм2 в синтетической изоляции - он мягкий, гибкий, хорошо изолирован, при работе будет лишь слегка греться. Можно изготовить вторичную обмотку и из нескольких жил медного провода.

Половина витков вторичной обмотки мотается на одно плечо, половина на другое. Если не окажется проводов достаточной длины, можно соединить из кусков - ничего страшного. Намотав обмотки на оба плеча, нужно измерить напряжение на каждой из них, оно может отличаться на 2-3В - сказываются несколько отличные свойства магнитопроводов разных ЛАТРов, что особо не влияет на свойства дуги при сварке. Потом обмотки на плечах последовательно соединяются, но надо следить, чтобы они не оказались в противофазе, иначе на выходе получится напряжение, близкое к нулю (см. статью Обмотка сварочного трансформатора). При напряжении сети 220-230В сварочный трансформатор данной конструкции должен развивать в дуговом режиме ток 100-130А. Ток при коротком замыкании вторичной цепи - до 180А.

Может оказаться, что в окна не удалось вместить все рассчитанные витки вторичной обмотки, и выходное напряжение оказалось ниже желаемого. Рабочий ток уменьшится от этого не сильно. В большей степени понижение напряжения холостого хода влияет на процесс зажигания дуги. Дуга зажигается легко при напряжениях, близких к 50В и выше. Хотя дугу можно без особых проблем зажигать и при более низких напряжениях. Так что если изготовленный транформатор имеет выход около 40В, то его вполне можно применять для работы. Другое дело, если попадутся электроды, рассчитанные на высокие напряжения, - некоторые марки электродов работают от 70-80В.

Тороидальный трансформатор

На кольцах от ЛАТРов можно также изготовить сварочный трансформатор по другой - тороидальной схеме. Для этого необходимы также два кольца, лучше от крупных ЛАТРов. Кольца соединяются и изолируются: получается одно кольцо-магнитопровод со значительной площадью сечения.

Сварочный трансформатор из ЛАТРа
Сварочный трансформатор из ЛАТРа

Первичная обмотка содержит столько же витков, как и в предыдущей схеме, но мотается по длине всего кольца и, как правило, ложится в два слоя. Проблема дефицита внутреннего пространства окна магнитопровода такой схемы трансформатора стоит еще более остро, чем для предыдущей конструкции. Поэтому изолировать здесь нужно как можно более тонкими слоями и материалами. Нельзя здесь применять и толстые обмоточные провода. Хотя в некоторых установках применяются ЛАТРы особенно больших размеров, только на одном кольце такого можно изготовить тороидальный сварочный трансформатор.

Выгодное отличие тороидальной схемы для сварочного транформатора - более высокий КПД. На каждый виток вторичной обмотки теперь будет приходиться более одного вольта напряжения, следовательно, "вторичка" будет иметь меньше витков, а выходная мощность будет выше чем, в предыдущей схеме. Однако длина витка на тороидальном магнитопроводе будет больше, и сэкономить на проводе здесь вряд ли удастся. К недостаткам данной схемы следует отнести: сложность намотки, ограниченный объем окна, невозможность использования провода большого сечения, а также большую интенсивность нагрева. Если в предыдущем варианте все обмотки находились раздельно и хоть частично имели контакт с воздухом, то теперь первичная обмотка находится полностью под вторичной, и их нагрев взаимоусиливается.

Использовать для вторичной обмотки жесткие провода сложно. Ее легче намотать мягким многожильным или изготовленным из нескольких жил проводом. Если правильно подобрать все провода и аккуратно их уложить, то в пространство окна магнитопровода вместится необходимое количество витков вторичной обмотки и на выходе трансформатора получится нужное напряжение.

Иногда из нескольких колец ЛАТРов делают тороидальный сварочный трансформатор по-другому, ставят их не друг на друга торцами, а перематывают железные полосы ленты из одного на другой. Для этого сначала из одного кольца выбираются внутренние витки полос, чтобы расширить окно. Кольца других ЛАТРов распускаются полностью на полосы ленты, которые потом как можно плотнее наматываются на наружный диаметр первого кольца. После этого собранный единый магнитопровод очень плотно обматывается изолирующей лентой. Таким образом, получается кольцо-магнитопровод с более объемным внутренним пространством, чем у всех предыдущих. В такой можно будет вместить провод значительного сечения. Необходимое количество витков рассчитывается по площади сечения собранного кольца.

К недостаткам этой конструкции следует отнести трудоемкость изготовления магнитопровода. Тем более что как ни старайся, а вручную намотать железные полосы друг на друга так же плотно, как раньше, все равно не удастся. В результате магнитопровод получается хлипким. При работе в режиме сварки железо в нем сильно вибрирует, издавая мощный гул.

<< Предыдущая (Из статора)

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Литература





Copyright © 2006-2011 tool-land.ru