Самодельные станки и приспособления:
Первые станки
Фото старых станков
Видео простейших станков
Стойки и направляющие для дрели
Универсальный станок из дрели
Циркулярная пила из дрели
Токарный станок
Токарный станок с ножным приводом
Сверлильный станок из дрели
Сверлильный станок для плат
Сверлильный станок
Регулирование оборотов дрели
Насадки на дрель
Лобзик-станок
Настольный электролобзик с эксцентриком
Лобзиковый станок из ручного электролобзика
Ленточный шлифстанок из дрели
Вариатор для станка
Подключение трехфазного двигателя к однофазной сети
Приспособление для фрезерования шипов
Ленточный шлифстанок
Ленточная пила
Циркулярка из ручной дисковой пилы
Полировальный станок
из дрели
Станок по резке камня
Станина для болгарки
Самодельный шкив
Простая передача для станка
Самодельный верстак
Фрезерный стол
Ручной листогиб
Самодельный трубогиб
Преобразование вращательного
движения в прямолинейное
Виды передач
Использование автомобильной шпаклевки
Тахометр из моторчика и вольтметра
Печь для плавки алюминия
Современные станки для домашних мастерских и работа на них:
Токарный станок
Сверлильный станок
Циркулярный станок
Фуговальный станок
Лобзиковый станок
Ленточнопильный станок
Радиально-консольная пила
Работа на токарном станке
Резец
Работа на циркулярном станке
Работа на лобзиковом и ленточнопильном станках
Ручной электроинструмент:
Дрель
Устройство дрели
Ремонт дрели
Устройство шуруповерта
Ремонт шуруповерта
Ручной фрезер
Работа ручным фрезером
Приспособления для ручного фрезера
Электролобзик
Дисковая пила
Направляющие для дисковой пилы
Электрорубанок
Сабельная пила
Эксцентриковая шлифовальная машина
Ленточная шлифовальная машина
Перфоратор
Отличия перфоратора от ударной дрели
Устройство перфоратора
Строительный фен
Работа болгаркой
Сельскохозяйствен- ные (садовые) инструменты:
Самодельная пилорама
Самодельная бетономешалка
Самодельный культиватор из лебедки
Самодельный плуг
Самодельный ручной культиватор
Ручная сеялка
Самодельный дровокол
Бензопила
Устройство бензопилы
Работа бензопилой
Насадки и приспособления для бензопилы
Ремонт бензопилы
Универсальные козлы
Мойка и сортировка картофеля
Плодосъемник для яблок
Подъемник для дачи
Самодельный снегоуборщик
Триммеры
Газонокосилки
Кусторезы и сучкорезы
Снегоуборщики
Мотоблоки
Мотокультиваторы
Работа мотоблоком
Обслуживание мотоблока
Устройство мотоблока
Ремонт мотоблока
Самодельная газонокосилка
Ручной инструмент:
Фото старых инструментов
Первый инструмент
Обзор отверток
Обзор гаечных ключей
Клещи, плоскогубцы, кусачки и т.п.
Струбцины и зажимы
Пила
Напильник
Фреза
Сверло
Метчик и плашка
Заточка:
Заточка ножей
Приспособления для заточки
Бруски для заточки ножей
Угол заточки ножа
Заточка и разводка пилы
Заточка сверла
Заточка цепи бензопилы
Станок для заточки из ленточной шлифмашины
Материалы:
Оргстекло
Фторопласт
Капролон
Обработка пластмасс
Гибка оргстекла

Надежность сварочного трансформатора
Расчет сварочного трансформатора
Обмотка сварочного трансформатора
П-образный сварочный трансформатор
Сварочный трансформатор из статора электродвигателя
Сварочный аппарат из ЛАТРа

Самодельный сварочный аппарат

Сварочным аппаратом в простейшем виде является один лишь трансформатор с подключенными к нему необходимыми проводами и зажимами. Для грубой работы этого вполне достаточно. И в принципе сделать сварочный аппарат своими руками несложно, но для его изготовления потребуются дорогостоящие материалы. Поэтому заниматься его изготовлением целесообразно, если уже есть в наличии часть материалов, или есть возможность их купить по ценам существенно ниже рыночных. Иначе себестоимость самодельного сварочного аппарата может оказаться близкой к стоимости фирменного аппарата с лучшими характеристиками.

Самодельный сварочный аппарат
Самодельный сварочный аппарат

Сварочные аппараты сделанные своими руками в основной своей массе обладают выраженной спецификой перед своими собратьями промышленного изготовления. На первое место здесь зачастую ставится не тщательность расчета параметров конструкции и соблюдение технологии изготовления, а возможность достать тот или иной компонент будущей конструкции самодельного сварочного аппарата. Делать трансформатор чаще всего приходится из того, что есть, а не из того, из чего хотелось бы. Многие конструкции отличаются особой оригинальностью компоновки, собираются из материалов, ничего общего до того со сварочным делом, а то и с трансформаторами вообще не имевшими. Параметры элементов конструкции некоторых образцов сварочных трансформаторов могут сильно выходить за рамки рекомендуемых стандартными методиками значений.

Тем не менее большинство самодельных сварочных аппаратов вполне оправдывают свое существование. Их сварочные характеристики находятся на приемлемом рабочем уровне, а в случае необходимости могут быть подправлены.

То, что разные трансформаторы по-разному варят, сварщикам известно хорошо. В одном случае дуга зажигается и горит стабильно, швы ложатся ровно, работать таким аппаратом легко - сварщики говорят: "варит мягко". В другом же случае наоборот: удерживать дугу тяжело, она часто гаснет, металл сильно разбрызгивается, и швы получаются какими-то рваными и размытыми, притом что трансформатор развивает необходимый ток, даже вроде бы обладает запасом по мощности и с выходным напряжением у него тоже все в порядке. В чем же дело? А причина как раз в способности трансформатора стабильно держать рабочий ток, что характеризуется таким показателем, как внешняя вольт-амперная характеристика (ВАХ) источника питания. Про неё подробно написано в статье Типы сварочных аппаратов. Если в двух словах - ток короткого замыкания не должен сильно отличаться от тока сварки. Ток должен быть ограничен либо увеличенным магнитным рассеянием трансформатора, либо балластным сопротивлением, либо дросселем, либо другим способом.

О качестве внешних характеристик сварочных трансформаторов судят на практике. Если с трансформатором работать легко, дуга горит стабильно, а наплавленный металл ложится равномерно - значит, все в порядке.

Надежность сварочного трансформатора

При эксплуатации сварочного аппарата, и тем более сделанного своими руками, работающий на пределе своих возможностей трансформатор постепенно изнашивается - действует перегрев, вибрация, влага, механические воздействия.

Злейшим врагом сварочных трансформаторов является перегрев. Самым действенным средством против перегрева являются надежные обмоточные провода с плотностью тока не более 5-7 А/мм2. Чтобы провод быстро охлаждался, он должен иметь хороший контакт с воздухом. Для этого в обмотках делаются щели. Сначала мотается первый слой и с внешних сторон вставляются деревянные или гетенаксовые планки толщиной 5-10 мм, потом планки вставляются через каждые два слоя провода: так каждый слой имеет контакт с воздухом с одной стороны.

Катушка сварочного трансформатора с вентиляционными щелями
Катушка сварочного трансформатора с вентиляционными щелями

Если трансформатор делается без вентилятора, то щели должны ориентироваться вертикально. Тогда через них постоянно будет циркулировать воздух: теплый поднимается вверх, а снизу засасывается холодный. Еще лучше, если трансформатор постоянно обдувается вентилятором. Вообще-то принудительный обдув мало влияет на скорость нагрева трансформатора, зато заметно ускоряет его охлаждение. Быстрее всего греются и хуже всего охлаждаются тороидальные трансформаторы. У сильно греющегося сварочного трансформатора с закрытыми обмотками даже мощный обдув не решит этой проблемы, и здесь придется удерживать температуру обмоток разве что очень умеренным режимом работы.

Если предстоит варить много и быстро, а ваш сварочный трансформатор намотан не ахти какими проводами и катастрофически быстро греется и т.д., здесь можно применить одно кардинальное средство борьбы с перегревом. Перегрева можно не так бояться, если весь трансформатор полностью погрузить в трансформаторное масло. Обладая значительной теплопроводностью, масло не только отводит тепло из обмоток, но и является дополнительным изолятором. В простейшем виде это просто ведро с маслом с утопленным в нем трансформатором, откуда выходят только четыре провода - такое "чудо" иногда можно увидеть на дворах в сельской местности.

Самодельный сварочный трансформатор помещенный в емкость с трансформаторным маслом
Самодельный сварочный трансформатор помещенный в емкость с трансформаторным маслом

В режиме сварки трансформатор создает мощное переменное магнитное поле, которое притягивает к нему стальные элементы, вызывая вибрацию. Вибрируют не только стальные корпуса сварочных аппаратов, но и вообще все детали, соединенные с трансформатором и находящиеся внутри магнитопровода. Особенно подвержены вибрациям подвижные части регулирующих устройств мощности, если таковые имеются. К подвижным элементам (большей частью промышленных аппаратов) могут относиться: сердечники, магнитные шунты, подвижные обмотки, т.е. элементы, с помощью передвижения которых изменяется рабочий ток трансформатора и которые невозможно закрепить совершенно жестко. Эти части связаны с неподвижными элементами трансформатора посредством винтов, направляющих и других элементов, деформирующихся под действием переменных сил. Вибрации подвержены и закрепленные жестко элементы конструкции. Амплитуды и действие вибрации зависят от множества конструктивных факторов, которыми во многом и определяется надежность сварочного трансформатора. Нередки случаи, когда из-за недоработки конструкции или некачественной сборки, вследствие вибрации быстро выходят из строя даже трансформаторы промышленного изготовления. Для самодельных конструкций эта проблема стоит еще более остро, особенно когда используются обмоточные провода в тонкой лаковой изоляции. От постоянной вибрации и трения друг о друга витков, лак на некоторых участках может разрушаться, что неизбежно приведет к межвитковому замыканию. Поэтому изоляция между слоями провода здесь обязательна. Также необходимо предусмотреть, чтобы под действием вибрации не произошло разрушение или продавливание на углах каркаса обмоток или (в тех конструкциях, где его вообще нет) слоя изоляции между катушками и железом магнитопровода. Можно без всякого, преувеличения сказать, что вибрация наравне с перегревом является одной из основных причин преждевременного выхода из строя сварочных трансформаторов.

При эксплуатации и тем более хранении сварочного аппарата, следует опасаться сырых подвалов и вообще мест с повышенной влажностью. Постепенно обмотки впитывают в себя влагу, которая, попадая в мельчайшие щели и трещины изоляции, долго не высыхает, становясь хорошим проводником тока.

Чаще всего проблемы бывают с первичной катушкой высокого напряжения. Первичная катушка содержит большее количество витков, обычно она сильнее греется, ее более тонкий провод больше подвержен влиянию разрушающих механических воздействий, нежели провод вторичной цепи. Эта катушка находится под опасным напряжением, и при повреждении изоляции ее провода высокое напряжение может попасть на корпус или магнитопровод трансформатора. Если сварочный трансформатор не имеет корпуса, то повреждения обмоток могут происходить от случайных ударов, а также опрокидываний и падений тяжелого трансформатора. Разрушающее воздействие на изоляцию оказывает вибрация, особенно для провода в лаке, перегрев обмоток и влага. Если произошел пробой на корпус или магнитопровод, которые не заземлены, или повреждена внешняя изоляция провода первичной обмотки, то при прикосновении человек попадет под высокое напряжение. От пробоя на корпус спасает заземляющий провод. Однако заземление на самодельных конструкциях делается нечасто.

Другой вариант пробоя первичной обмотки, когда она пробивает на вторичную катушку внутри трансформатора. В этом случае ничего не подозревающий сварщик и его помощники могут попасть под высокое напряжение сети со всеми вытекающими отсюда последствиями. Это может предотвратить надежная изоляция первичной и вторичной обмоток друг от друга. Напряжение вторичной катушки может повыситься, даже если ее изоляция не нарушена. Напряжение на выходе вторичной катушки зависит от количества витков первичной катушки. Так, при межвитковом замыкании первичной катушки достаточно большое количество ее витков может "вылететь" из работы: в результате напряжение на выходе сварочного трансформатора повысится.

Корпус для самодельного сварочного аппарата

Чтобы сварочный трансформатор не был подвержен влиянию всех атмосферных стихий и возможным механическим воздействиям, его желательно упрятать в корпус. Однако здесь не все так просто. Сварочный трансформатор - мощный источник электромагнитного излучения, и далеко не все материалы одинаково хорошо годятся для его наружной оболочки. Тем более что в некоторых случаях возможна еще и потеря мощности из-за индуцируемых в оболочках корпусов токов.

При установке сварочного трансформатора в корпус особое внимание надо уделять его материалу и возможности протока воздуха для охлаждения, при этом верх должен быть закрыт, предохраняя трансформатор от возможного дождя. Корпуса или хотя бы некоторые их части лучше делать из не магнитных материалов: латунь, дюраль, гетенакс, пластмассы. Если корпус сделан из жести или напротив оси первичной обмотки привинчены стальные панели, то при работе вся эта конструкция будет втягиваться внутрь и вибрировать. Звук при этом иногда бывает такой, что его можно сравнить разве что с работой пилы - мощной "циркулярки". Поэтому устанавливать сварочный трансформатор можно либо в цельновыгнутый жесткий стальной корпус, который не так поддается вибрациям, или делать панели напротив хотя бы первичной обмотки из немагнитных материалов.

Для практически всех существующих конструкций сварочных трансформаторов характерны очень сильные магнитные поля рассеивания вблизи обмоток. Эти поля вызывают не только сильные вибрации магнитных материалов, но и заметные потери энергии в кожухах и других конструктивных элементах трансформаторов. Потери энергии обусловлены возбуждением в кожухах вихревых токов. Присутствие вихревых токов, а следовательно, и потери энергии, будут тем меньшими, чем больше расстояние от обмоток трансформатора до стенок металлического корпуса. На потери энергии мало влияют магнитные свойства металлов. Если корпус сделать из немагнитных металлов - латунь, алюминий и т.д., то это мало повлияет на генерацию вихревых токов, ведь здесь важна токопроводимость материала, которая у металлов всегда высокая. Исследования показали, что несколько уменьшить потери в корпусе можно, сделав на нем продольные рассечки, типа вентиляционных щелей, которые, располагаясь на пути вихревых токов с наибольшей плотностью, увеличат сопротивление материала для них. Таким образом можно уменьшить потери на 30-50% в зависимости от конструкции кожуха и использованного на нем металла.

С другой стороны, потери такого рода вообще могут быть сведены на нет, если корпус выполнить из изоляционного материала, тем более что в этом случае сразу удастся избежать и вибраций, вызванных переменными магнитными полями. Однако корпус из диэлектрических материалов сложнее сделать или же подобрать уже готовый, также он имеет худшие показатели прочности. Конечно, проблемы с корпусом, его вибрациями, вихревыми токами и потерями энергии можно вообще избежать, отказавшись от цельного корпуса, как это и принято, наверное, у большинства самодельных сварок. Однако отсутствие корпуса добавит массу других, не менее важных проблем, а также отразится на безопасности и надежности в эксплуатации сварочного аппарата. Тем более что потери на уровне нескольких процентов практически неразличимы на фоне флуктуации напряжения в сети, а также присутствия некоторого сопротивления в линиях электропередачи.

В корпус сварочного аппарата можно установить вентилятор или сделать его герметичным и залить трансформаторным маслом.

Следующая >> (Расчет сварочного трансформатора)

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Литература




Copyright © 2006-2011 tool-land.ru