Самодельные станки и приспособления:
Первые станки
Фото старых станков
Видео простейших станков
Стойки и направляющие для дрели
Универсальный станок из дрели
Циркулярная пила из дрели
Токарный станок
Токарный станок с ножным приводом
Сверлильный станок из дрели
Сверлильный станок для плат
Сверлильный станок
Регулирование оборотов дрели
Насадки на дрель
Лобзик-станок
Настольный электролобзик с эксцентриком
Лобзиковый станок из ручного электролобзика
Ленточный шлифстанок из дрели
Вариатор для станка
Подключение трехфазного двигателя к однофазной сети
Приспособление для фрезерования шипов
Ленточный шлифстанок
Ленточная пила
Циркулярка из ручной дисковой пилы
Полировальный станок
из дрели
Станок по резке камня
Станина для болгарки
Самодельный шкив
Простая передача для станка
Самодельный верстак
Фрезерный стол
Ручной листогиб
Самодельный трубогиб
Преобразование вращательного
движения в прямолинейное
Виды передач
Использование автомобильной шпаклевки
Тахометр из моторчика и вольтметра
Печь для плавки алюминия
Современные станки для домашних мастерских и работа на них:
Токарный станок
Сверлильный станок
Циркулярный станок
Фуговальный станок
Лобзиковый станок
Ленточнопильный станок
Радиально-консольная пила
Работа на токарном станке
Резец
Работа на циркулярном станке
Работа на лобзиковом и ленточнопильном станках
Ручной электроинструмент:
Дрель
Устройство дрели
Ремонт дрели
Устройство шуруповерта
Ремонт шуруповерта
Ручной фрезер
Работа ручным фрезером
Приспособления для ручного фрезера
Электролобзик
Дисковая пила
Направляющие для дисковой пилы
Электрорубанок
Сабельная пила
Эксцентриковая шлифовальная машина
Ленточная шлифовальная машина
Перфоратор
Отличия перфоратора от ударной дрели
Устройство перфоратора
Строительный фен
Работа болгаркой
Сельскохозяйствен- ные (садовые) инструменты:
Самодельная пилорама
Самодельная бетономешалка
Самодельный культиватор из лебедки
Самодельный плуг
Самодельный ручной культиватор
Ручная сеялка
Самодельный дровокол
Бензопила
Устройство бензопилы
Работа бензопилой
Насадки и приспособления для бензопилы
Ремонт бензопилы
Универсальные козлы
Мойка и сортировка картофеля
Плодосъемник для яблок
Подъемник для дачи
Самодельный снегоуборщик
Триммеры
Газонокосилки
Кусторезы и сучкорезы
Снегоуборщики
Мотоблоки
Мотокультиваторы
Работа мотоблоком
Обслуживание мотоблока
Устройство мотоблока
Ремонт мотоблока
Самодельная газонокосилка
Ручной инструмент:
Фото старых инструментов
Первый инструмент
Обзор отверток
Обзор гаечных ключей
Клещи, плоскогубцы, кусачки и т.п.
Струбцины и зажимы
Пила
Напильник
Фреза
Сверло
Метчик и плашка
Заточка:
Заточка ножей
Приспособления для заточки
Бруски для заточки ножей
Угол заточки ножа
Заточка и разводка пилы
Заточка сверла
Заточка цепи бензопилы
Станок для заточки из ленточной шлифмашины
Материалы:
Оргстекло
Фторопласт
Капролон
Обработка пластмасс
Гибка оргстекла

Контроль сварных соединений

Вполне очевидно, что качество сварных швов влияет на функциональность всей сваренной конструкции. Дефекты приводят к ослаблению прочности изделий и их разрушению в процессе эксплуатации. Из-за проницаемости швов нарушается герметичность сосудов и систем, работающих под давлением.

Контроль сварных соединений
Контроль сварных соединений

После завершения сварочных работ, изделия должны подвергаться контролю сварных соединений с целью обнаружения и исправления дефектов. Невооруженным глазом можно рассмотреть лишь часть из них - крупные наружные трещины и поры, непровары, подрезы и т.п. Большая часть дефектов скрыта в глубине металла или имеет такие малые размеры, что обнаружить их можно только с использованием специальных приборов и материалов.

Существует много способов контроля сварных швов, различающихся по принципу действия, способности к обнаружению тех или иных видов дефектов, техническому оснащению. Методы контроля сварных соединений подразделяются на разрушающие и неразрушающие. Последние, в силу понятных причин, являются наиболее широко используемыми. Применяются следующие основные методы неразрушающего контроля сварных соединений:

  • внешний осмотр;
  • радиационная дефектоскопия;
  • магнитный контроль;
  • ультразвуковая дефектоскопия;
  • капиллярная дефектоскопия;
  • контроль сварных швов на проницаемость;
  • прочие методы (проверка с использованием вихревых токов и т.п.).

Внешний осмотр

Всякий контроль сварных соединений начинается с внешнего осмотра, с помощью которого можно выявить не только наружные дефекты, но и некоторые внутренние. Например, разная высота и ширина шва и неравномерность складок свидетельствуют о частых обрывах дуги, следствием которых являются непровары.

Перед осмотром, швы тщательного очищаются от шлака, окалины и брызг металла. Более тщательная очистка в виде обработки шва промывкой спиртом и травлением 10%-ным раствором азотной кислоты придает шву матовую поверхность, на которой легче заметить мелкие трещины и поры. После использования кислоты нужно не забыть удалить ее спиртом во избежание разъедания металла.

Визуальный контроль сварных соединений выявляет, прежде всего, наружные дефекты - геометрические отклонения шва (высоты, ширины, катета), наружные поры и трещины, подрезы, непровары, наплывы.

Для эффективности контроля используют дополнительное местное освещение и лупу с 5-10 кратным увеличением. Лупа - очень полезный инструмент в данном случае, она помогает выявить многие дефекты, которые нельзя рассмотреть невооруженным глазом - тонкие волосяные трещины, выходящие на поверхность, пережег металла, малозаметные подрезы. Она позволяет также проследить, как ведет себя конкретная трещина в процессе эксплуатации - разрастается или нет.

При внешнем осмотре применяется также измерительный инструмент для замера геометрических параметров сварного соединения и дефектов - штангенциркуль, линейка, различные шаблоны.

Капиллярный контроль

Капиллярный контроль основан на капиллярной активности жидкостей - их способности втягиваться, проникать в мельчайшие каналы (капилляры), имеющиеся на поверхности материалов, в том числе поры и трещины сварных швов. Чем выше смачиваемость жидкости и чем меньше радиус капилляра, тем больше глубина и скорость проникновения жидкости.

С помощью капиллярного контроля можно контролировать материалы любого вида и формы - ферромагнитные и неферромагнитные, цветные и черные металлы и их сплавы, керамику, пластмассы, стекло. В основном, капиллярный метод применяют для обнаружения невидимых или слабовидимых невооруженным глазом поверхностных дефектов с открытой полостью. Однако с помощью некоторых материалов (керосина, например) можно с успехом обнаруживать и сквозные дефекты.

Для капиллярного контроля разработан ГОСТ 18442-80 "Контроль неразрушающий. Капиллярные методы. Общие требования".

Контроль сварных швов с помощью пенетрантов. К наиболее распространенным способам контроля качества сварных швов с использованием явления капиллярности относится контроль пенетрантами (англ. penetrant - проникающий) - веществами, обладающими малым поверхностным натяжением и высокой световой и цветовой контрастностью, позволяющей легко их увидеть. Сущность метода состоит в окраске дефектов, заполненных пенетрантами.

Пенетрант для контроля сварных швов
Пенетрант для контроля сварных швов

Существуют десятки рецептур пенетрантов, обладающих различными свойствами. Есть пенетранты на водной основе и на основе различных органических жидкостей (керосина, скипидара, бензола, уайт-спирита, трансформаторного масла и пр.). Последние (на основе различных органических жидкостей) особенно эффективны и обеспечивают высокую чувствительность выявления дефектов.

Если в рецептуру пенетрантов входят люминесцирующие вещества, то их называют люминесцентными, а способ контроля - люминесцентной дефектоскопией. Наличие таких пенетрантов в трещинах определяется при облучении поверхности ультрафиолетовыми лучами. Если в состав смеси входят красители, видимые при дневном свете, пенетранты называются цветными, а метод контроля - цветной дефектоскопией. Обычно в качестве красителей используются вещества ярко-красного цвета.

У разных пенетрантов разная чувствительность. Самые чувствительные (1-й класс чувствительносьи) способны выявлять капилляры с поперечным размером 0,1-1 мкм. Верхний предел капиллярного метода - 0,5 мм. Глубина капилляра должна быть минимум в 10 раз больше ширины.

Пенетрант может храниться в любой емкости и наноситься на контролируемый шов любым способом, но наиболее удобная форма выпуска - аэрозольные баллончики, с помощью которых смесь распыляется на поверхность металла. Обычно в комплект средства контроля швов входят три баллончика:

  • сам пенетрант;
  • очиститель, предназначенный для очистки поверхности от загрязнений перед проведением контроля и удаления излишков пенетранта с поверхности перед проявлением;
  • проявитель - материал, предназначенный для извлечения пенетранта из дефекта и создания фона, для образования четкого индикаторного рисунка.

Баллончики могут быть разборными, позволяющими заряжать их на специальном зарядном стенде, входящем в комплект.

Методы контроля сварных соединений с использованием разных пенетрантов могут незначительно отличатся друг от друга, но в основном они сводятся к трем операциям - очистке поверхности, нанесению на неё пенетранта и проявлению дефектов с помощью проявителя. В деталях это выглядит следующим образом.

Контроль сварных соединений пенетрантом
Контроль сварных соединений пенетрантом: 1 - очищенная поверхность с трещиной, 2 - нанесенный на поверхность пенетрант (пенетрант заполнил трещину), 3 - очищенная от пенетранта поверхность (пенетрант остался в трещине), 4 - нанесенный на поверхность проявитель (проявитель вытягивает пенетрант из трещины на поверхность, и может создавать светлый фон)

Поверхность шва и околошовной зоны очищается от загрязнения, обезжиривается и сушится. При очистке важно не внести в дефекты новых загрязнений, поэтому механический способ очистки, при котором повреждения могут забиться посторонними включениями, использовать нежелательно. Обычно рекомендуется заканчивать операцию очистки очистителем, идущим в комплекте, - протерев им поверхность материалом не оставляющим волокон. Если сварной шов перед контролем подвергался травлению, травящий состав нужно нейтрализовать 10-15% раствором соды (Na2CO3).

При контроле в условиях минусовых температур (если свойства используемого пенетранта допускают это), поверхность изделия рекомендуется протереть чистой тканью, смоченной в этиловом спирте.

Затем на поверхность распыляют пенетрант и дают выдержку в течение 5-20 минут (в соответствии с инструкций для конкретного состава). Это время необходимо на проникновение жидкости в имеющиеся дефекты.

После выдержки излишки пенетранта удаляются с поверхности. Способ удаления может различаться в зависимости от используемого состава. Водорастворимые смеси удаляют тканью без волокон, смоченной в воде, но обычно излишки пенетранта удаляются очистителем, входящим в состав комплекта. Независимо от способа удаления, нужно добиться того, чтобы поверхность была полностью очищена от препарата.

В заключительной стадии операции, из третьего баллончика наносится индикаторная жидкость, которая вытягивает пенетрант из полостей дефектов по принципу промокашки, отображая их расположение и форму в виде цветового рисунка. В случае необходимости, при осмотре применяют лупу с двукратным увеличением.

Контроль сварных швов пенетрантом
Контроль сварных швов пенетрантом

Проверка качества сварных швов с использованием пенетрантов имеет как достоинства, так и недостатки. В числе первых - простота использования, высокая чувствительность и достоверность обнаружения дефектов, многообразие контролируемых по виду и форме материалов, высокая производительность, относительная дешевизна. К основным недостаткам относится возможность обнаружения только поверхностных дефектов, необходимость тщательной очистки шва, невозможность применения после механической обработки поверхностного слоя. Применяя пенетранты, следует также иметь в виду, что широко раскрытые дефекты (более 0,5 мм) могут не проявиться - из-за особенности капиллярного явления.

Контроль швов на непроницаемость с помощью керосина. Несмотря на свою простоту, контроль качества сварных соединений с помощью керосина достаточно эффективен и к тому же не требует сколько-нибудь значительных материальных затрат. Недаром им продолжают широко пользоваться и в наше время, богатое на различные высокофункциональные устройства и приборы.

Керосин способен проникать сквозь мельчайшие трещины в сварных швах, благодаря чему позволяет обнаруживать мельчайшие дефекты. По своей эффективности способ контроля керосином эквивалентен гидравлическому испытанию с давлением 3-4 кгс/мм2. Он основан на том же явлении капиллярности, что и контроль пенетрантами. К слову сказать, в некоторые пенетранты фирменного изготовления керосин входит в качестве составляющего компонента.

Проверка керосином сводится к ряду последовательных операций:

  • Очистка шва с двух сторон от шлака, грязи и ржавчины.
  • Покрытие одной из сторон (той, за которой удобнее наблюдать) водной суспензией каолина или мела (350-450 г на 1 л воды). После нанесения суспензии необходимо подождать, пока она высохнет. Для ускорения процесса покрытие можно просушить горячим воздухом.
  • Обильное смачивание обратной стороны керосином - 2-3 раза в течение 15-30 минут, в зависимости от толщины металла. Это можно делать струей из краскопульта или паяльной лампы, а также с помощью кисти или кусочка ветоши.
  • Наблюдение за стороной, на которую нанесена меловая или каолиновая суспензия, и маркирование проявляющихся дефектов.

Негерметичность швов обнаруживает себя появлением темных полос или точек на меловом или каолиновом покрытии, которые с течением времени расплываются в более обширные пятна. Именно поэтому наблюдать за обратной стороной нужно сразу после нанесения керосина - чтобы зафиксировать первые проявления керосина, точно указывающие на место и форму дефекта. Проявляющиеся точки свидетельствуют о порах и свищах, полоски - о сквозных трещинах.

Цистерна подготовленная для проверки на герметичность с использованием керосина
Цистерна подготовленная для проверки на герметичность с использованием керосина

Керосин и мел для проверки качества сварных соединений
Керосин и мел для проверки качества сварных соединений

Продолжительность испытания при комнатной температуре должна составлять несколько часов. Скорость проникновения керосина в дефекты зависит от его вязкости, которая уменьшается с повышением температуры.

Контроль сварных швов с помощью керосина предназначен в основном для стыковых соединений, в отношении нахлесточных он менее эффективен. Повысить его действенность в этом случае можно, просверлив отверстие и закачав или залив керосин между швами. Применяя этот прием нужно иметь в виду, что керосин, попавший в стык деталей, может впоследствии вызвать коррозию, поэтому его необходимо удалить после испытания подогревом детали горелкой или паяльной лампой.

Схема контроля керосином качества швов в нахлесточном соединении
Схема контроля керосином качества швов в нахлесточном соединении: 1 - испытуемое соединение, 2 - емкость с керосином

Контроль сварных швов на проницаемость

Ко многим используемым в промышленности и быту всевозможным емкостям, гидравлическим и пневматическим системам, изготовленным с использованием сварки, предъявляется требование герметичности. Для определения последней проводятся испытания на непроницаемость сварных швов, называемые по-разному - течеисканием, пузырьковым способом, пневмо- и гидроиспытанием. Целью всех этих методов является обнаружение сквозных дефектов, через которые жидкость или газ могут выходить наружу сосуда или системы или, напротив, проникать внутрь.

Существует довольно много методов контроля сварных швов на проницаемость с использованием различных материалов - газов (в основном воздуха или азота), жидкостей (воды или масла). Сутью испытаний является создание избыточного давления или разрежения и обнаружение мест, через которые под их воздействием рабочий компонент (газ или жидкость) проникает через сварной шов.

По виду используемого рабочего компонента и способа создания разности давлений различают пневматический, гидравлический, пневмогидравлический, вакуумный контроль.

Пневматический способ контроля. При пневматическом способе проверяемая емкость надувается воздухом, азотом или инертным газом до давления, составляющего 100-150% от рабочего (в зависимости от технических условий на изделие). Наружные швы смачиваются пенообразующим составом, который представляет собой раствор туалетного или хозяйственного мыла в воде (50-100 г мыла на 1 литр воды).

Если испытания проводятся при минусовой температуре, часть воды (до 60%) заменяется спиртом. Появившиеся на поверхности швов пузырьки свидетельствуют о наличии сквозных дефектов.

Рекомендуется подключать к емкости манометр и предохранительный клапан. По показаниям манометра контролируется давление и его падение - в случае наличия сквозных дефектов. Предохранительный клапан обеспечивает безопасность испытаний, сбросом давления при превышении его значения выше допустимого уровня.

Небольшие сосуды можно не промазывать мыльным раствором, а помещать в ванну с водой. Дефекты обнаружат себя появлением воздушных пузырьков. Этот способ проверки даже более прост и надежен, чем промазка швов пенообразующим раствором.

Проверка аммиаком. К разновидностям пневматического испытания относится контроль качества сварки с помощью аммиака, который подают под давлением в проверяемую емкость в количестве сотой части всего объема воздуха. Перед подачей аммиачно-воздушной смеси, швы, подлежащие контролю, покрывают бумажной летной или медицинским бинтом, пропитанными фенолфталеином. Проходя через сквозные дефекты, аммиак оставляет на ленте или бинте красные пятна. Метод проверки с помощью аммиака очень достоверен.

Обдув сварных соединений воздухом. В тех случаях, когда изделие нельзя накачать воздухом, можно применить упрощенный вариант пневматического испытания, обдувая шов с одной стороны струей воздуха под давлением, а с другой - обмазав его мыльным раствором. В этом случае в зоне обдува создается подпор воздуха, который проявляет себя появлением пузырьков с обратной стороны (при наличии сквозных дефектов).

Проверка обдувом сварных соединений воздухом
Проверка обдувом сварных соединений воздухом

Чтобы получить необходимый эффект, необходимо соблюдать определенные условия: давление воздуха должно быть до 2,5 кгс/см2, струя должна направляться перпендикулярно шву, конец шланга должен быть увенчан ниппелем с отверстием 10-15 мм. Ниппель удерживают на расстоянии 50-100 мм от шва. Как и в случае пневматического испытания, наличие сквозных дефектов определяется по появлению пузырьков воздуха на обратной стороне шва. Способ наиболее эффективен при проверке угловых швов, поскольку в этом случае создается больший подпор.

Гидравлический контроль. Гидравлическое испытание предполагает использование в качестве компонента, создающего давление, воды или масла. После создания необходимого давления (100-150% от рабочего), емкость выдерживают в таком состоянии около 5-10 минут, обстукивая легкими ударами молотка с круглым бойком околошовную зону. Если шов имеет сквозной дефект, он проявится течью жидкости.

Емкости, работающие без значительного избыточного давления, необходимо выдерживать наполненными более длительное время - не менее двух часов.

Магнитная дефектоскопия

При контроле качества сварки магнитными дефектоскопами используется явление электромагнетизма. Прибор создает вокруг исследуемой области магнитное поле, поток линий которого, проходя через металл, искривляется в местах дефектов. Это искажение фиксируется определенными способами, из которых в сварочном производстве используются два - магнитопорошковый и магнитографический. При первом, на поверхность сварного соединения наносят сухой или влажный (в смеси с маслом, керосином или мыльным раствором) ферромагнитный порошок (например железный), который скапливается в местах дефектов, свидетельствуя, таким образом, о наличие несплошностей.

Проверка качества сварных швов магнитной дефектоскопией
Проверка качества сварных швов магнитной дефектоскопией

Более совершенный магнитографический способ предполагает наложение на шов ферромагнитной ленты, на которой после пропускания ее через прибор проявляются имеющиеся дефекты.

Проверка качества сварных швов магнитной дефектоскопией
Проверка качества сварных швов магнитной дефектоскопией: 1 - магнит, 2 - сварной шов, 3 - дефект, 4 - магнитная пленка.

Магнитным способам контроля могут подвергаться только ферромагнитные металлы. Хромоникелевые стали, алюминий, медь, не являющиеся ферромагнетиками, магнитному контролю не подлежат.

Ультразвуковая дефектоскопия

Ультразвуковой способ использует способность ультразвуковых волн отражаться от границ, разделяющих две упругие среды с разными акустическими свойствами. Посланная прибором ультразвуковая волна, пройдя металл, отражается от его нижней поверхности и возвращается обратно, фиксируясь датчиком. При наличии внутри металла дефекта, датчик отобразит искажение волны. Различные дефекты отображаются по-разному, что позволяет определенным образом классифицировать их.

Проверка сварных швов ультразвуковой дефектоскопией
Проверка сварных швов ультразвуковой дефектоскопией

Контроль качества сварных соединений с помощью ультразвуковых дефектоскопов в силу удобства его проведения получил очень широкое распространение - гораздо большее, чем магнитная и радиационная дефектоскопия. К его недостаткам относится сложность расшифровки сигнала (качественно сделать контроль сварного соединения способен только специалист, прошедший обучение), ограниченность использования для металлов с крупным зерном (аустенитные стали, чугун и пр.).

Радиационная дефектоскопия

Радиационная дефектоскопия основана на способности рентгеновского и гамма-излучения проникать через металлы и фиксировать на фотопленке дефекты, встречающиеся на его пути. Недостатком радиационной дефектоскопии является дороговизна приборов и вредность для людей используемого радиационного излучения.

Схема просвечивания сварного соединения
Схема просвечивания сварного соединения: 1 - источник излучения, 2 - дефект, 3 - контролируемое изделие, 4 - детектор.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Литература




Copyright © 2006-2011 tool-land.ru